
Journal of Structural Geology, Vol. 9, No. 5•6, pp. 705 to 717, 1987 0191-8141/87 $03.00 + 0.00 
Printed in Great Britain © 1987 Pergamon Journals Ltd. 

A 3-D kinematic model of fabric development in polycrystalline aggregates: 
comparisons with experimental and natural examples 

A. ETCHECOPAR 

Laboratoire de G6ologie Structurale--U.S.T.L.--Place E. Bataillon--34060 Montpellier C6dex, France 

and 

G. VASSEUR 

Centre G6ologique et G6ophysique--U.S.T.L.--Place E. Bataillon--34060 Montpellier C6dex, France 

(Received 10 March 1986; accepted in revised form 6 March 1987) 

Abstract--A 3-D generalization of the approach previously developed by Etchecopar for the simulation of fabrics 
in polycrystalline aggregates is presented. The model is based on a geometric minimization of gaps, overlaps and 
boundary displacements between deformed neighbouring cells; each cell may deform using a small number (<5) 
of independent slip systems. The model is applied to experimentally flattened peridotites and sheared ice as well 
as  t o  naturally sheared peridotites and quartzites. For weak deformations, the simulation matches the natural and 
experimental observations but, for large deformations, major discrepancies are observed; in particular the model 
cannot explain the obliquity of Lattice Preferred Orientation with respect to the schistosity, which is commonly 
observed in shear deformations. However, when taking into account a 'dynamic recrystallization' process, these 
discrepancies are strongly reduced and the obliquity dearly appears in simple-shear models. 

INTRODUCTION 

SINCE TI-IE work of Nicolas et al. (1971) on peridotites, 
the analysis of Lattice Preferred Orientations (LPO) is 
commonly used for the kinematic interpretation of plas- 
tic deformation. It is widely accepted that the obliquity 
of LPO of quartz or olivine with respect to schistosity or 
foliation (XY plane) is an expression of rotational defor- 
mation and can be used to determine the sense of shear. 
Systematic observations in shear zones support this 
assumption (Kojima & Hide 1958, Laurent & Etch- 
ecopar 1976, Hudleston 1977, Mattauer etal .  1977, Burg 
& Laurent 1978, Brunel 1980, Prinzhofer & Nicolas 
1980, Malavieille & Etchecopar 1981, Garcia Celma 
1983). However, this criterion remains qualitative 
because of the difficulty of performing experimental 
shear deformation on natural samples. For this reason, 
numerical simulations seem very attractive. 

Following the analysis of Bishop & Hill (1951), Lister 
et al. (1978) proposed a numerical simulation for poly- 
crystalline deformation based on an energy criterion. 
Their model assumes that a homogeneous deformation 
occurs throughout the polycrystalline aggregate and that 
each crystal must achieve the imposed deformation 
through various slip systems. It can be shown (Von 
Mises 1928) that at least five independent slip systems, 
each resulting in a simple shear deformation, are 
required to achieve a given bulk homogeneous strain. 
Some of Lister's models (e.g. models A and C of Lister 
& Hobbs, 1980) agree well with LPO diagrams of experi- 
mentally flattened quartzites (Tullis et al. 1973). 

However, this model cannot be applied to crystals 
where only a few glide systems exist (e.g. olivine and ice) 

because a homogeneous deformation is then impossible 
to achieve. In the case of low-temperature shear defor- 
mation of quartzite, this model can hardly predict the 
observed obliquity between the actual LPO and the 
schistosity (Marjoribanks 1976, Bouchez 1977). For 
example, model C of Lister & Hobbs (1980, fig. 14) 
predicts the correct asymmetry in the rose diagram of 
the trend of c-axis in the X Z  plane; however, the asym- 
metry in the c-axis pole figure remains quite weak even 
after 60% shortening. 

Various observations in peridotites show that strain is 
very heterogeneous from one crystal to the next (Boul- 
lier & Nicolas 1973). In order to allow such a heterogene- 
ous deformation, other mechanisms such as recrystalli- 
zation must necessarily take place. The importance of 
recrystallization in natural deformation is well known 
(Carter et al. 1964, Nicolas & Poirier 1976, Urai et al. 
1986) and this process should be included in realistic 
models. 

In this paper, we propose an alternative approach 
based on purely geometric considerations; this approach 
is the 3-D generalization of a model previously 
developed in 2-D (Etchecopar 1977). The basic principle 
of this method is to restrict the slip systems to those 
which are well documented; in most rocks, and espe- 
cially in peridotites, this number is less than five. There- 
fore each crystal cannot match exactly the imposed 
deformation. Since the deformation of neighbouring 
crystals may not be the same, gaps, overlaps and grain- 
boundary sliding necessarily occur. The proposed 
method consists of an iterative minimization of these 
gaps, overlaps and also boundary sliding between crys- 
tals. As long as gaps and overlaps remain weak, we 
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assume that they can be absorbed by other physical 
mechanisms such as diffusion, recrystallization, flexur- 
ing, twisting, etc. 

We first describe the method used, then test the 
results for coaxial straining with data obtained on experi- 
mentally flattened dunite by Nicolas et al. (1973). Next, 
we consider shear strain; in this case, the model indicates 
that, for large strains, gaps and overlaps increase drasti- 
cally whereas the fabrics remains symmetric. We then 
propose a numerical procedure which simulates a recrys- 
tallization process. LPOs produced by a combination of 
slip and recrystallization are in good agreement with 
natural ones. In particular, progressive shearing yields 
oblique fabric patterns. 

METHOD 

Initial aggregate of' cells 

The assumed aggregate is an array of 216 (6 x 6 x 6) 
cells, identical in shape, and filling the whole space. 
Each cell is a regular polyhedron shown in Fig. 1 with 14 
vertices, 24 edges and 12 faces; such a geometry was 
chosen in order to limit anisotropy effects during the 
interaction between the various cells. The initial lattice 
orientation of each cell is chosen through a random 
orientation of its reference axes. Each slip system con- 
sists of a slip plane, defined by its normal, and a slip 
direction belonging to that plane. Up to five independent 
glide systems can be used. In fact we restrict the simula- 
tion to one, two or four independent glide systems, 
intended to simulate olivine, ice and quartz deforma- 
tion. 

Simulation method 

In order to achieve a finite deformation, we proceed 
through two imbricated iterative loops. The first loop 
consists of an incremental deformation of the envelope 
of the aggregate; the increment of each step is A), = 0.2 
for shear strain and 10% shortening for coaxial flatten- 
ing. For each increment of strain, the second loop 
achieves the deformation of each cell and computes its 
internal rotation and slips according to the iterative 
procedure described below, and illustrated in Fig. 2. 

When a strain increment----either coaxial flattening or 
simple shearing--is applied to the external envelope, we 

a b 
Fig. l(a). Geometry of the elementary cell (polyhedron with 14 
vertices). (b) Assembling of four elementary cells simulating a part of 

the aggregate. 

first define an ideal deformed array as a result of a 
homogeneous deformation (dotted lines of Fig. 2b). In 
fact, a given cell cannot achieve exactly this deformation 
due to its limited number of slip systems; nevertheless, 
we can obtain, for each cell, the kinematic parameters--- 
rotation, translation and slitr--such that the deformed 
cell approaches this geometry as close as possible. The 
best fit is obtained by minimization of the quadratic sum: 

14 
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(X,, Yi, Zi) being the actual co-ordinates of the vertices 
of the deformed cell and (Xti, it,, Zti) being those of the 
ideal cell. For small deformations, q depends quadrati- 
cally on the rotation, translation and slip parameters 
which can therefore be obtained directly by matrix 
inversion. 

When this is done successively for each cell, a new 
array of cells is obtained with relatively large gaps and 
overlaps (solid lines in Fig. 2b). In order to take into 
account the interaction between neighbouring cells, a 
new ideal array is defined. Each vertex of this ideal array 
corresponds to the barycenter of vertices initially 
belonging to neighbouring cells, as shown in Fig. 2(c). In 
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Fig. 2. Illustration of various steps of the simulation. (a) Initial 
aggregate before deformation. Dashes represent the projection of the 
slip plane• (b) Dot ted lines represent the ideal shape of the model 
aggregate that we should obtain through a homogeneous simple-shear 
deformation; solid lines are the shapes actually obtained at the first 
iteration, using best estimate of rotation, translation and slip par- 
ameters. (c) At this step, actual cells are disjointed. Barycenters of 
vertices, initially belonging to neighbouring cells are then defined. 
(Details shown in insets.) (d) Using these barycenters, a new ideal 
model aggregate of ceils is defined. In the following iteration, each cell 
tries to achieve the corresponding shape. (e) As a result of the next 
iteration, a new geometry of cells is obtained• Note that gaps and 
overlaps remain but are smaller than in (b). The processes described in 
(c)-(e) are then iterated until the geometry does not change any 

longer. 
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order to approach this new array (Fig. 2d), the kinematic 
parameters giving the best fit between actual vertices 
and ideal vertices are computed. The same minimization 
criterion is used; this time (Xa, Yti, Zti) are the co-ordi- 
nates of the barycenters previously defined. 

The resulting array of cells shown in Fig. 2(e) presents 
smaller gaps and overlaps. This process of barycenter 
definition and parameter optimization for all cells is 
iterated until q does not decrease any longer, for any 
cell. 

This simple procedure, similar to that used by Etch- 
ecopar (1977), does not explicitly deal with volumetric 
gaps and overlaps; however it has the advantage of 
minimizing the cell boundary sliding. Moreover, the 
algorithm is very simple and, as shown later, the simula- 
tion generally gives acceptable gaps and overlaps. 

given strain, the orientation is more pronounced for the 
experimental fabrics than for the simulated ones. Fur- 
thermore the third axisA exhibits a distinct reorientation 
in the experiment but only a weak preferred orientation 
in the model. 

This latter discrepancy may be due to the existence of 
a secondary slip system with the same slip plane and with 
A as the slip direction. Thus we attempted a new simula- 
tion in which, for each strain increment, this second slip 
system--(0 1 0) [0 0 1]--is only allowed, once the 
minimization is completed with the first system alone. In 
this case, the new diagrams (Fig. 6) are very similar to 
the previous one with respect to the N and G axes but 
they now exhibit a preferred orientation for the A axis, 
which is in better agreement with the experimental data. 

COAXIAL FLATTENING: COMPARISON WITH 
EXPERIMENTALLY DEFORMED PERIDOTITE 

In order to test the model we compare our results with 
those obtained by Nicolas et al. (1973) on synthetic 
dunite experimentally deformed by coaxial flattening. 
In this case, one slip system (0 1 0) [1 0 0] is largely 
predominant; therefore, it was the only one that we 
considered at first. For each cell this system is defined by 
the normal N to the glide plane, the slip direction G and 
an auxiliary direction A (see Fig. 3). 

The flattening of the aggregate is simulated by apply- 
ing successive shortening increments of 10%. The result- 
ing distribution of each axis is shown in Fig. 4 for the 
initial stage and for shortening of 36, 49 and 65%. For 
the final stage (65 % shortening) the volumetric gaps and 
overlaps reach about 15% of the total volume. Starting 
from a rather homogeneous initial fabric, two of the axes 
clearly exhibit a reorientation: the axis N (normal to the 
slip plane) tends toward the shortening direction with a 
relative density minimum in this direction; the distribu- 
tion of the axis G (slip direction) forms two girdles, 
approaching the flattening plane with increasing shor- 
tening strain. However the auxiliary axis (A) does not 
exhibit any clear preferred orientation. 

These results are in good agreement with the experi- 
mental data of Nicolas et al. (1973) (Fig. 5) for the 
reorientation of the two axes N and G; however, for a 
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Fig. 3. Reference frame of an individual cell. G is the  slip direction in 

the plane normal  to N. A is an auxiliary direction. 

THE CASE OF SIMPLE SHEAR---COMPARISON 
WITH EXPERIMENTALLY DEFORMED ICE 

Experimental data on rocks deformed in simple shear 
are not presently available. Yet torsion experiments on 
ice provide interesting results since the slip systems of ice 
are similar to those of quartz (i.e. basal). The plastic 
deformation of ice uses six slip directions normal to the 
c-axis (i.e. in the basal plane). For the simulation, we use 
only two independent orthogonal slip directions, any 
other being achieved by some linear combination of 
these. The shear of the aggregate is simulated with a 
shear increment A), = 0.2 until a maximum total shear 
of ), = 3 is reached. For ~ less than 2, the volumetric 
ratio of gaps and overlaps with respect to the initial 
volume remains low (<10%) but it increases dramati- 
cally for y larger than 2. 

Starting from a homogeneous initial fabric, Fig. 7(a) 
shows the development of a preferred orientation for the 
axis N normal to the slip plane (equivalent to the c-axis 
of ice). The distribution of the N axis is clearly bimodal: 
most axes occur along two crossed girdles, one being 
normal to the shear plane, the other being its mirror- 
symmetry image with respect to the XY plane. The 
maximum concentration in each girdle is in the outer 
region of the diagram. 

This distribution is very similar to that obtained by 
Lister & Hobbs (1980) in the case of quartz with rela- 
tively easy basal glide. A comparison with the experi- 
mental data on ice of Bouchez & Duval (1982) (Fig. 7b) 
reveals some similarities but also striking differences. 
For low strain, the LPO experimental diagram exhibits 
two maxima with same overall orientations as in the 
simulation; but the experimentally produced maxima 
are much more concentrated in the outer region of the 
diagram and, even for low strain, the experimental 
fabrics are more pronounced. More important still, one 
of the maxima disappears for large experimental strain, 
something which does not occur in the simulation. 
Clearly, our model with slip as a fundamental deforma- 
tion mechanism cannot explain the observation of asym- 
metric fabrics; other physical mechanisms must occur 
and are discussed below. 
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Fig. 4. Simulation of LPO for flattened peridotites (one slip system only: (010)[100]). For each axis, N [010], G [100], A [001] 
(cf. Fig. 3), the distribution is given for 216 cells in Schmitt projection as isodensity contours. Contours are for 1, 3, 5, 7, 9 
and 11%. The horizontal line (F) is the projection of the flattening plane• (a) Initial model  with no deformation; (b)-(d)  are 

for 36, 49 and 65% shortening, respectively. 
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Fig. 5. Lattice Preferred Orientations obtained by Nicolas et al. (1973) for experimentally flattened synthetic dunites. One 
hundred crystals were measured and the LPO of the three axes (010,100, 001) corresponding to N, G and A (Fig. 3) are 
given as isodensity contours for 2, 4 and 8%. (a) Initial distribution with no deformation; (b)-(d) are experimental 

distributions for 33, 44 and 58% shortening, respectively. 

a 

Fig. 6. Simulation of A axis distribution for flattened peridotites when 
allowing a second slip direction (A) in the G A  plane (Fig. 3). Results 

are shown for 65% shortening. Symbols as in Fig. 4. 

In order to explain the computed bimodal distribution 
of the LPO,  it is interesting to follow the behaviour of 
each cell during the deformation process. This is much 
more easy to follow in the case of the 2-D simulation 
(Etchecopar 1977) where a similar bimodal distribution 
occurs. In this case, the cells can be separated into two 
sets according to the direction of the slip plane with 
respect to the shear direction, as illustrated in Fig. 8. 
These two sets correspond to the two maxima of the 
bimodal fabrics. For a cell of the first set, internal slip 
occurs in accordance with the imposed shear; the slip 
direction tends to become parallel to the shear direction 
and large cell deformations may occur easily. In contrast, 
ceils of the second set are characterized by an internal 
slip opposite to the imposed shear; the modelled defor- 
mation of these cells results in more and more grain- 
boundary sliding. The cells of this second set become 
locked. Their  deformation decreases and subsequent 
gaps, overlaps and grain-boundary sliding with neigh- 
bouring cells increase dramatically. 

It seems likely that in the 3-D case the same situation 
occurs, when only one slip system is dominant. Such a 
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Fig. 7(a). Distribution of c-axis for the simulation of sheared ice. Isodensity contours correspond to 1 , 3 ,  5 . 7 ,  9 a n d  11%.  
The horizontal line (X) represents the projection of the XY plane and the dashed oblique line is the projection of the shear 
plane. Diagrams correspond to y = 1, 2 a n d  3. (b)  Distribution of c-axis in experimentally sheared ice from Bouchez & 
Duval (1982). Dashed line is the projection of the shear plane and line (X) is the projection of the XY plane. Diagrams are 

fory = 0 .6 ,  0 .95 a n d  2. 
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Fig. 8. IUustration of the behaviour of cells in the 2-D case showing 
how they can be separated into two sets according to the slip plane 
orientation (arrows). An initial circular shape is assumed. (a) Cells of 
the first set can achieve the imposed deformation by slip, Points 
initially belonging to neighbouring cells (1, 2, 3) remain adjacent after 
the deformation. (No grain boundary sliding occurs.) (b) For cells of 
the second set, the same imposed deformation results in large grain 
boundary sliding (points initially belonging to neighbouring cells 

become separated). 

separation of cells into two sets is consistent with the 
observed and computed bimodal distribution of the 
LPO: the maximum normal to the shear plane corre- 
sponds to the cells of the first set, whereas the other 
maximum (oblique with respect to the shear plane) 
corresponds to the locked cells of the second set. 

In natural aggregates, the locked cells obviously dis- 
appear after large deformations; this is true for experi- 
mentally and naturally deformed ice (Bouchez & Duval 
1982, Hudleston 1977) and also for naturally deformed 
peridotites (Prinzhofer & Nicolas 1980) and low temper- 
ature quartzites (Bouchez 1977, Bouchez et  al. 1982). In 
all these cases, the LPO diagrams exhibit only one 
maximum normal to the shear plane after large deforma- 
tion. The important problem is therefore to find the 
physical processes which can explain the unlocking of 
the locked cells• 

In natural rocks, two remarkable examples of unlock- 
ing can be observed; the first one is 'en cornue' crystals 
in which flexuring and twisting allow a progressive 
unlocking of part of the crystal (Etchecopar 1977)• This 
results in a very characteristic shape as shown on Fig. 9. 
The second example is illustrated by the truncated ensta- 
tite crystals observed by Nicolas et aI, (1971)• In this 
case, the fracturing of a locked crystal normal to its 
elongation gives smaller and more isodiametric crystals 
which enables rotation favouring further slip in accor- 
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Fig. 9. Example of an 'en cornue'  crystal. (a) Principle of the deformation: c is the locked part of the crystal and I is the part 
which forms the tail. (b) Natural example of 'en cornue'  olivine crystal from Boullier & Nicolas (1973). The dotted lines 

correspond to dislocation walls and the lower figure displays the slip-plane directions. 

dance with the imposed shear (Fig. 10). Although spec- 
tacular, these two mechanisms are obviously not the 
common way of unlocking. 

A classical observation on naturally sheared rocks is 
that individual grains have a smaller elongation ratio 
( X / Z )  than predicted by the estimated finite strain, 
especially, for large strains. Various authors (Carter et 
al. 1964, Hobbs 1968) explain this difference by dynamic 
recrystallization processes. Two recrystallization pro- 
cesses are currently accepted: recrystallization by grain- 
boundary migration, and recrystallization due to sub- 
grain rotation (Hobbs 1968, Green et al. 1970, TuUis et 
al. 1973, Nicolas & Poirier 1976). Another classical 
observation in quartz ribbons is that the mean long axis 
of crystals is oblique with respect to the schistosity; such 
an example is shown on Fig. 11. It is interpreted by 
Brunel (1980) as a consequence of dynamic recrystalliza- 
tion. 

With respect to Lattice Preferred Orientations, the 
major effect of such recrystallization processes is com- 
parable to the cutting up of enstatite crystals: for a given 
crystal, recrystallization restores a more isodiametric 
shape and allows unlocking and rotation. Crystals for 
which the initial orientation was unfavourable can then 
be gradually reorientated so that their slip plane 

becomes parallel to the shear plane. The LPO distribu- 
tion tends to be unimodal by removal of the maximum 
which is oblique to the shear plane. Such a relationship 
between the occurrence of LPO asymmetry and the 
amount of recrystallization is actually observed in quartz 
mylonites. Recently published data, obtained in the 
Moine Thrust zone (Law et al. 1986) are shown in Fig. 
12. Away from the thrust plane, the old flattened grains 
present a symmetrical c-axis distribution whereas the 
c-axis distribution of surrounding recrystallized grains 
tends to exhibit a single girdle. It seems likely that these 
features are due to an increasing shear strain in the 
vicinity of the thrust plane. However, these observations 
could alternatively be explained in terms of a strain path 
dependence on the distance from the thrust plane (Law 
et al. 1986). 

It is very difficult to model realistically such recrystalli- 
zation processes. Therefore we designed a very rough 
way of taking them into account. We assume that when 
gaps, overlaps and grain-boundary sliding remain impor- 
tant once the minimization procedure is achieved, then 
each cell suddenly recovers its polyhedr~l shape with 
preservation of its last lattice orientation. Although this 
approach is very crude, it simulates the observed LPO 
quite satisfactorily. 

Fig. 10. Illustration of unlocking of a deformed locked crystal by fracturing into more isodiametric crystals and rigid rotation 
of the individual fragments. 
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Fig. 11. Quartz r ibbon parallel to schistosity showing quartz grains 
oblique (A) with respect to schistosity plane (S). This pat tern is 
interpreted as due to dynamic recrystallization during shear deforma- 

tion. 

We now simulate the simple shearing of ice assuming 
that 'complete recrystallization' occurs for 7 = 2 and 
7 = 4. Figure 13 illustrates the distribution of c-axes for 
high values of 7 (7 = 3, 4 and 5). For 7 = 3, a compari- 
son with Fig. 7 (without recrystallization) shows an 
obvious difference: the LPO distribution now exhibits 
only one girdle, slightly oblique with respect to the XY 
plane, instead of two symmetric crossed girdles (Fig. 
7a). For larger strain (7 = 4 and 5), these maxima 
become sharper and occur roughly normal to the shear 
plane. This unimodal distribution, oblique with respect 
to the X Y  plane, compares well with the LPO distribu- 
tion of experimentally deformed ice for large strain 
(Fig. 7b). 

The same model can also be applied to low-tempera- 
ture quartz deformation for which the main slip systems 
are similar to those of ice. It is well known that, in 
sheared rocks, quartz exhibits LPO diagrams with a 
maximum oblique to the schistosity (Marjoribanks 1976, 
Bouchez 1977, Mattauer et al. 1977, Burg & Laurent 
1978, Brunel 1980, Simpson 1980, Gapais & White 
1982). Our results suggest that this feature is due to the 
combined action of shear deformation and recrystalliza- 
tion. 

SIMULATION OF SIMPLE SHEAR IN 
PERIDOTITES 

Natural examples of sheared peridotites are very scarce; 
nevertheless, Prinzhofer & Nicolas (1980) have studied 
a shear zone in harzburgites of New Caledonia. Their 
experimental LPO distribution of three axes of olivine 
crystals are shown in Fig. 14. These three axes ([0 1 0], 
[1 0 0], [0 0 1]) exhibit an intense fabric, particularly the 
first two. 

The simulation assumes only one slip system, the one 
previously selected for the simulation of coaxial flatten- 
ing of dunite. The computed LPO diagram of the three 
equivalent directions (N, G, A, cf. Fig. 3) are shown in 
Fig. 15 for a shear strain 7 = 5, achieved with two 
'complete recrystallization cycles' after g = 2 and 7 = 4. 
For the two first axes, the comparison is quite accept- 
able, in particular, in terms of their obliquity with respect 
to the schistosity. However, the distribution of the third 
axis does not exhibit clear fabrics. We thus proceeded 
again to a new simulation in which the second slip system 
of the same plane is allowed once the minimization is 
completed by slip on the first system. The resulting LPO 
diagrams are shown on Fig. 16; the maximum of the first 
axis distribution is strengthened whereas a weak fabric 
appears on the third axes. Differences with the observa- 
tional results remain; they could be due to the existence 
of other slip systems and eventually to the fact that the 
actual strain path may differ from simple shear. 

SIMULATION OF QUARTZ DEFORMATION 
WITH BASAL AND PRISMATIC SYSTEMS 

At high temperature quartz deforms preferentially 
using both three basal and three prismatic slip systems 
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Fig. 12. Quartz c-axis fabncs from mylonitic Cambrian quartzites at the Stack of Glencoul,  after Law et al. (1986, fig. 5) 
Distances from the Moine Thrust  plane are indicated. The upper row are new (recrystallized) grains in the vicinity of the 

thrust plane; the lower row are old grains. 
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Fig. 13. Distribution of c-axis for the simulation of sheared ice. Two 'complete recrystallization' processes are performed 
for ~ = 2 and 4. Diagrams are for a total deformation ~, = 3, 4 and 5. Symbols as in Fig. 7(a). Max indicates the maximum 

density obtained. 

N G 

Fig. 14. Example of natural LPO distribution in harzburgite from New Caledonia (Prinzhofer & Nicolas 1980). One hundred 
crystals are measured for N [010], G [100] and A [001] axes. Isodensity contours are given for 1% (broken line), 3, 4, 6, 8 

and 10%. 

N G A 

Fig. 15. Simulation of simple shear in olivine with one slip system, for ~, = 5. Distribution of the three axes N, G, and A is 
given with isodensity contours for 1, 3, 5, 7, 9 and 11%. Max indicates the maximum density obtained. 

N G 
Max 21% 

A 

Fig. 16. Simulation of simple shear in olivine assuming another secondary glide system in the basal plane. All other details 
as for Fig. 15 caption. 
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Fig. 17. (a) Sketch of a quartz crystal showing its three prismatic slip planes with their three slip directions (a~, a2, a0 and 
their trace in the basal plane. (b)-(c) and (d)-(f) show two strain paths yielding the same overall deformation (c) and (f). 
The upper path (b, c) consists in a slip along a 3 followed by a rigid rotation. The lower path (d; e, f) consists in three slips 

along al, a 2 and a 3 without any rotation. 

(Fig. 17a) (Nicolas & Poirier 1976). Of  these six slip 
systems, only four are linearly independent.  Moreover ,  
in this case, the rotation around the c-axis is completely 
undefined; this is because the same crystal deformation 
can be achieved through different strain paths using the 
various prismatic slip systems, as illustrated in Figs. 
17(b) & (c) and (d)-(f) .  

Since the kinematic parameters  of each cell are chosen 
in order to optimize geometric  criteria, no priority of any 
slip system with respect to the others was considered. 
This assumption is restrictive since the energy thresholds 
are certainly different for each slip system. However ,  as 
shown later, the general pattern obtained with this 
simple model is comparable  with observations. 

The results of the simulation of simple shear deforma- 
tion are illustrated in Fig. 18 for 7 varying f rom 1 to 5. For 
low values of 7 (7 =< 2) the c-axes are concentrated in 
two small circles, symmetrical with respect to the XY 
plane. For high values of 7, most c-axes lie on a single 
girdle, oblique to the X-Y plane. The maxima of the 
distribution are located nearly 25 ° from the X Z  plane. In 
this simulation, two 'complete  recrystallizations cycles' 
were assumed for 7 = 2 and 7 = 4; but in the present 
case, the recrystallization is not of major  importance: 
due to the four independent  slip systems, any cell can 
easily achieve the imposed deformation and no serious 
locking occurs. 

Numerous natural data of LPO distribution in high- 
temperature  deformed quartz are available (Kojima & 
Hide 1958, Bouchez & Pecher 1976, 1981, Bouchez 
1977, Brunel 1983, Simpson & Schmid 1983, Garcia 
Celma 1983). Two examples are given in Fig. 19. It 
seems that the proposed model (Fig. 18) can explain 
common features of the observations: for a low deforma- 
tion, most of the c-axes are located on small circles 
whereas for a large deformation,  a unique girdle oblique 
to the schistosity is usually observed. In this girdle, the 
maxima are generally not in the X Z  plane. Due  to our 
ignorance of the actual strain path of natural deforma- 
tion, and due to the disparity of observations, more 
detailed comparisons with natural observations are 
difficult. 

DISCUSSION AND CONCLUSION 

It is interesting to further discuss the implications of 
the model proposed for the simulation. In this model,  
since only a few slip systems are assumed to be active, 
the overall deformation is heterogeneous and depends 
on the interaction between neighbouring cells. The num- 
erical approach of this interaction is purely geometric 
and is based on the minimization of gaps, overlaps and 
boundary sliding. As gaps and overlaps do not exist in 
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a b 

d 

e 
Fig. 18. Simulation of simple shear in quartz with basal and prismatic slip systems. The c-axis distribution is drawn for (a) 

y = 1, (b) 2, (c) 3, (d) 4, and (e) 5. Isodensity contours are for 1,3,5,7,9 and 11%. 

a b 
Fig. 19(a). Natural quartz c-axis distribution in Nepal by Bouchez etaf. (1976). One hundred crystals measured; isodensity 
contours are for 1,2,3 and 5%. (b) Natural quartz c-axis distribution in Cap de Creus shear zone (Spain) from Garcia Cehna 

(1983). 256 crystals measured; isodensity con tours are for 1,3,5,7 and 10%. 
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natural de format ions ,  o ther  mechan isms  such as diffu- 

sion, f lexuring, etc. ,  necessari ly take place in o rder  to 

a c c o m m o d a t e  the de fo rma t ion  of  each cell, but  these 

secondary  mechanisms  are ignored  in the model .  The  

under lying assumption of  the mode l  is that such 

mechanisms  are easier  to act ivate  than slip on secondary  

systems which are somet imes  p roposed  to achieve a 

h o m o g e n e o u s  deformat ion .  
For  large shear de fo rmat ions  of  crystall ine aggregates  

with dominan t  basal-slip systems, both  this mode l  and 

Lister 's  mode l  fail to account  for a ma jo r  fea ture  

observed  in expe r imen ta l  and natura l  de fo rmat ion :  the 

obl iqui ty  of  c-axis or ienta t ions  with respect  to the schis- 

tosity. 
The  origin of  these discrepancies  has been  discussed 

and, on the basis of  var ious  observa t ions ,  dynamic  

recrystal l izat ion is p roposed  as an addi t ional  mechan i sm 

which becomes  impor t an t  for large de fo rmat ion .  The  

final result of  recrystal l izat ion is the res tora t ion  of  a 

more  i sodiametr ic  shape for the var ious crystals. There -  

fore recrystal l izat ion enables  ex terna l  ro ta t ion  of those 
crystals which were  initially o r i en ta ted  in an unfavour-  

able direct ion.  Thus we modif ied  our  mode l  in o rder  to 

account  for recrystal l izat ion;  for large shear  strain, our  

mode l l ed  L P O s  then present  a strong asymmet ry  with 

respect  to the X Y  plane,  which is consistent  with the 

various expe r imen ta l  and natural  observat ions .  A n o t h e r  

re la ted point  is that  natural  fabrics seem to deve lop  

more  rapidly than s imula ted  ones;  such a fea ture  can 

perhaps  be expla ined  by the same type of  mechanisms.  

The  p rocedure  for s imulat ing the r ec rys t a l l i za t ion - -  

th rough comple t e  recovery  of  the initial shape of  each 

c e l l - - i s  qui te  rough;  fur ther  re f inements  could be intro- 

duced into the s imulat ion but ,  until some physical mode l  

of  recrystal l izat ion is avai lable,  such re f inements  would  

not be really informat ive .  Again ,  the re la t ive  energy 

necessary for recrystal l izat ion to occur  cannot  be esti- 

mated  and only the geomet r i c  results of  the mode l  can be 

used. The  same thing is true when  several  slip systems 

can be active in each crystal. 

A l though  very schemat ic ,  the p roposed  model  is 

be l ieved  to throw some light on the d e v e l p m e n t  of  

Lat t ice  Prefe r red  Or ien ta t ions  dur ing natura l  and 

exper imenta l  de fo rma t ion  of  polycrystal l ine aggregates .  

The  results of  this model  confirm that  the general  

obl iqui ty of  L P O  can be used as a shear  cr i ter ion;  on the 

o ther  hand,  some of the s imulat ions show that  the 

presence  and locat ion of  max ima  within the girdles are 

not  necessari ly cri teria for the occur rence  of  secondary  

slip systems. 
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